Lipschitz Carnot-Carathéodory Structures and their Limits

نویسندگان

چکیده

Abstract In this paper we discuss the convergence of distances associated to converging structures Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under mild controllability assumption limit vector-fields structure, equi-Lipschitz that converge uniformly compact subsets, locally Carnot-Carathéodory distance. case in which distance is boundedly compact, show uniform sets. an example not several examples our result can be applied. Among them, subFinsler Mitchell’s Theorem with norms, general for subspaces Lie algebra connected group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz classes of A-harmonic functions in Carnot groups

The Hölder continuity of a harmonic function is characterized by the growth of its gradient. We generalize these results to solutions of certain subelliptic equations in domains in Carnot groups.

متن کامل

Nonnegative Polynomials and Their Carathéodory Number

In 1888 Hilbert showed that every nonnegative homogeneous polynomial with real coefficients of degree 2d in n variables is a sum of squares if and only if d = 1 (quadratic forms), n = 2 (binary forms) or (n, d) = (3, 2) (ternary quartics). In these cases, it is interesting to compute canonical expressions for these decompositions. Starting from Carathéodory’s Theorem, we compute the Carathéodor...

متن کامل

Compression bounds for Lipschitz maps from the Heisenberg group to L1

We prove a quantitative bi-Lipschitz nonembedding theorem for the Heisenberg group with its Carnot-Carathéodory metric and apply it to give a lower bound on the integrality gap of the Goemans-Linial semidefinite relaxation of the Sparsest Cut problem.

متن کامل

A new class of ( H k , 1 ) - rectifiable subsets of metric spaces ∗

The main motivation of this paper arises from the study of Carnot–Carathéodory spaces, where the class of 1-rectifiable sets does not contain smooth non-horizontal curves; therefore a new definition of rectifiable sets including non-horizontal curves is needed. This is why we introduce in any metric space a new class of curves, called continuously metric differentiable of degree k, which are Hö...

متن کامل

About the Carathéodory Number

In this paper we give sufficient conditions for a compactum in R to have Carathéodory number less than n+ 1, generalizing an old result of Fenchel. Then we prove the corresponding versions of the colorful Carathéodory theorem and give a Tverberg-type theorem for families of convex compacta.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamical and Control Systems

سال: 2022

ISSN: ['1079-2724', '1573-8698']

DOI: https://doi.org/10.1007/s10883-022-09613-1